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Electrocardiography and 
Electroencephalography
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Components of the Electrocardiogram 
(ECG)

• Source(s)
– Potential differences within the heart
– Spatially distributed and time varying

• Volume conductor
– Inhomogeneous and anisotropic
– Unique to each individual
– Boundary effects

• ECG measurement
– Lead systems
– Bipolar versus unipolar measurements
– Mapping procedures

• Analysis
– Signal analysis
– Spatial analysis
– Dipole analysis
– Simulation and modeling approaches
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ECG History and Basics
• Represents electrical 

activity (not contraction)
• Marey, 1867, first 

electrical measurement 
from the heart.

• Waller, 1887, first human 
ECG published.

• Einthoven, 1895, names 
waves, 1912 invents 
triangle, 1924, wins 
Nobel Prize.

• Goldberger, 1924, adds 
precordial leads
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Electrophysiology Overview

• Pacemaker cells 
– SA Node
– AV Node
– Purkinje Fibers
– Overdrive suppression

• Conduction system
– Varied propagation

• Ventricular myocytes
– Electrical coupling
– Anisotropy

• The Electrocardiogram 
(ECG)
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ECG Source Basics
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ECG Source Basics
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Equivalent Sources

• Match cell/tissue structure to current sources
• Multiple models possible depending on formulation 

and assumptions
• Typical assumptions:

– uniform characteristics of tissue
– simple geometries

• Primary (versus secondary) sources
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Cardiac Sources

• Formulation in terms of cells impossible
• Dipole(s), multipoles: simple but incomplete
• Volume dipole density: hard to describe
• Surface dipole density: good compromise in some 

problems
• All require some model of time dependence 

(propagation)
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Heart Dipole Approaches

• Treat the heart as single dipole
• Fixed in space but free to rotate and change amplitude
• Einthoven triangle 
• Vector ECG (Vectorcardiogram)
• Lead fields: generalization of heart dipole
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Heart Dipole and the ECG

• Represent the heart as a 
single moving dipole

• ECG measures 
projection of the dipole 
vector

• Why a dipole?
• Is this a good model?
• How can we tell?
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Cardiac Activation Sequence 
and ECG
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Cardiac Activation Sequence as a 
Moving Dipole

• Oriented from active to 
inactive tissue

• Changes location and 
magnitude

• Gross simplification that 
is clinical important

Bioengineering 6460 BioelectricityECG/EEG

Electrocardiographic Lead Systems

• Einthoven Limb Leads (1895--1912):  heart vector, 
Einthoven triangle, string galvanometer

• Goldberger, 1924: adds augmented and precordial 
leads, the standard ECG

• Wilson Central Terminal (1944):  the "indifferent” 
reference

• Frank Lead System (1956):  based on three-
dimensional Dipole

• Body Surface Potential Mapping (Taccardi, 1963)



VI = ΦLA − ΦRA

VII = ΦLL − ΦRA

VIII = ΦLL − ΦLA

VI + VIII = VII
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Einthoven ECG

• Bipolar limb leads
• Einthoven Triangle
• Based on heart vector

(Note typo in text)

Applying Kirchoff’s Laws to these definitions yields:

Bioengineering 6460 BioelectricityECG/EEG

Augmented Leads

• Provide projections in 
additional directions

• Redundant to limb leads, 
i.e., no new information.

aV L = VI −
1
2
VII

aV F = VII −
1
2
VI

aV R = −1
2
(VI + VII)



IR + IF + IL = 0
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Wilson Central Terminal
• Goldberger (1924) and 

Wilson (1944)
• “Invariant” reference
• “Unipolar” leads
• Standard in clinical 

applications
• Driven right leg circuit

ΦCT − ΦRA

5000
+

ΦCT − ΦLA

5000
+

ΦCT − ΦLL

5000
= 0

ΦCT =
ΦRA + ΦLA + ΦLL

3

Bioengineering 6460 BioelectricityECG/EEG

Precordial Leads

• Modern clinical standard 
(V1-V6)

• Note enhanced 
precordials on right side 
of chest and V7
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Projection Summary
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Standard (12-lead) ECG

 1mm = 100 !V

 50 mm = 1 s  1 mm = 40 ms
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Sample ECG
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Vectorcardiographic Lead Systems
Frank Lead System
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Lead Vector
Burger and van Milaan (1940’s)

L = lead vector, depends on lead location, 
dipole location, and torso geometry and 
conductivity.

B & vM used phantom model of torso with 
dipole source to estimate L. 

Recall that for a dipole:

Now generalize this idea to

http://www.bem.fi/book/
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Lead Field Based Leads

• McFee and Johnston, 1950’s
– Tried to define leads such that E and I were constant over the 

heart volume.  This way, dipole movement would not change L 
– Developed lead system on this basis from torso phantom 

measurements
– Performance was improved for homogenous torso but the same 

for realistic torso.
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Multipoles

• Higher order expansion of 
solution to Poisson’s 
equation

• Monopole, dipole, 
quadropole, octopole… 

• Example: two wavefronts in 
cardiac tissue
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Multipole Based Models
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Body Surface Potential Mapping

• Measurements over 
entire torso

• Showed that resulting 
pattern was not (always) 
dipolar

• More complex source 
model than dipole 
required

Taccardi et al,
Circ., 1963
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Body Surface Potential Mapping
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BSPM Hisory

http://www.sci.utah.edu/gallery2/v/cibc/taccardi_sm.html

http://www.sci.utah.edu/gallery2/v/cibc/taccardi_lg.html

Small version:

Large version:
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State of the Art
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Sample Map Display
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Sample Map Display
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Feature/Pattern Analysis

LAD RCA LCx

PTCA Mapping

• Use spatial features to identify underlying conditions
– maxima, minima, zero lines, etc. 
– very condition dependent
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Basics of the EEG
• Sources 

– Cortical layer 5 pyramidal 
cells 

• currents of -0.78 to 2.97 pAm

– Burst of 10,000-50,000 
synchronously active 
pyramidal cells required for 
detection

• Equivalent to 1 mm2 of activated 
cells

– Modeled as a current dipole
• EEG Measurements

– Return current (like ECG)
– Strongly affected by head 

conductivities
– Sensitive to radially and 

tangentially oriented sources

 

cell body

source

sink

inhibitory

excitatory
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EEG Recording

• Scalp and cortex recording
• Unipolar and bipolar modes
• Filtering/averaging critical

Nunez, http://www.scholarpedia.org/article/Electroencephalogram
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EEG Montages

• Many systems (montages), 
10-20 is standard

• Reference electrode variable
• Electrode placement critical

Correct
Placement

Incorrect
Placement
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EEG Analysis 
• Frequency based

– Delta: < 3.5 Hz
– Theta: 3.5-7.5 Hz
– Alpha: 7.5-13 Hz
– Beta: > 13 Hz
– Rhythmic, arrhythmic, disrhythmic

• Voltage
• Morphology
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MEG Measurement

• Measures magnetic field 
mostly induced  from primary 
current and some from return 
current

• Not so affect by tissue 
conductivity

• Poor sensitivity to radially 
oriented sources

• Good sensitivity to 
tangentially oriented sources
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Tangential vs. Radial Sources
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